44 research outputs found

    Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data

    Get PDF
    Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered

    Features of Point Clouds Synthesized from Multi-View ALOS/PRISM Data and Comparisons with LiDAR Data in Forested Areas

    Get PDF
    LiDAR waveform data from airborne LiDAR scanners (ALS) e.g. the Land Vegetation and Ice Sensor (LVIS) havebeen successfully used for estimation of forest height and biomass at local scales and have become the preferredremote sensing dataset. However, regional and global applications are limited by the cost of the airborne LiDARdata acquisition and there are no available spaceborne LiDAR systems. Some researchers have demonstrated thepotential for mapping forest height using aerial or spaceborne stereo imagery with very high spatial resolutions.For stereo imageswith global coverage but coarse resolution newanalysis methods need to be used. Unlike mostresearch based on digital surface models, this study concentrated on analyzing the features of point cloud datagenerated from stereo imagery. The synthesizing of point cloud data from multi-view stereo imagery increasedthe point density of the data. The point cloud data over forested areas were analyzed and compared to small footprintLiDAR data and large-footprint LiDAR waveform data. The results showed that the synthesized point clouddata from ALOSPRISM triplets produce vertical distributions similar to LiDAR data and detected the verticalstructure of sparse and non-closed forests at 30mresolution. For dense forest canopies, the canopy could be capturedbut the ground surface could not be seen, so surface elevations from other sourceswould be needed to calculatethe height of the canopy. A canopy height map with 30 m pixels was produced by subtracting nationalelevation dataset (NED) fromthe averaged elevation of synthesized point clouds,which exhibited spatial featuresof roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlationwith RH50 of LVIS data with a slope of 1.04 and R2 of 0.74 indicating that the canopy height derived fromPRISM triplets can be used to estimate forest biomass at 30 m resolution

    Effects of tree trunks on estimation of clumping index and LAI from HemiView and terrestrial LiDAR

    Get PDF
    Estimating clumping indices is important for determining the leaf area index (LAI) of forest canopies. The spatial distribution of the clumping index is vital for LAI estimation. However, the neglect of woody tissue can result in biased clumping index estimates when indirectly deriving them from the gap probability and LAI observations. It is difficult to effectively and automatically extract woody tissue from digital hemispherical photos. In this study, a method for the automatic detection of trunks from Terrestrial Laser Scanning (TLS) data was used. Between-crown and within-crown gaps from TLS data were separated to calculate the clumping index. Subsequently, we analyzed the gap probability, clumping index, and LAI estimates based on TLS and HemiView data in consideration of woody tissue (trunks). Although the clumping index estimated from TLS had better agreement (R-2 = 0.761) than that from HemiView, the change of angular distribution of the clumping index affected by the trunks from TLS data was more obvious than with the HemiView data. Finally, the exclusion of the trunks led to a reduction in the average LAI by similar to 19.6% and 8.9%, respectively, for the two methods. These results also showed that the detection of woody tissue was more helpful for the estimation of clumping index distribution. Moreover, the angular distribution of the clumping index is more important for the LAI estimate than the average clumping index value. We concluded that woody tissue should be detected for the clumping index estimate from TLS data, and 3D information could be used for estimating the angular distribution of the clumping index, which is essential for highly accurate LAI field measurements

    PTSD and depressive symptoms in Chinese adolescents exposed to multiple stressors from natural disasters, stressful life events, and maltreatment: A dose-response effect

    Get PDF
    ObjectivesLittle is known about the effects and the extent that childhood adversity has on post-traumatic stress disorder (PTSD) and depression.Study designA population-based, epidemiological study from the Wenchuan earthquake.MethodsA total of 5,195 Wenchuan Earthquake adolescent survivors aged 11–18 years from nine high schools in southwest China completed questionnaires that assessed their PTSD and depression symptoms due to childhood maltreatment, stressful life events, and childhood earthquake exposure.ResultsThe PTSD and depression prevalences were 7.1 and 32.4%. After controlling for age and gender, the multiple linear regressions revealed that stressful life events had the most significant direct effect on depression (β = 0.491), followed by childhood emotional abuse (β = 0.085), and earthquake exposure (β = 0.077). Similarly, stressful life events (β = 0.583) were found to have more significant direct effects on PSTD, followed by earthquake exposure (β = 0.140); however, childhood emotional abuse was not found to have an effect. The structural equation modeling (SEM) revealed that there were interactions between the three childhood adversities, with all three concurrently affecting both PTSD and depression.ConclusionThese findings add weight to the supposition that psychological maltreatment, negative life events, and earthquake exposure contribute to PTSD and depression. In particular, the identification of subgroups that have a high prevalence of these childhood adversities could assist professionals to target populations that are at high risk of mental health problems

    Thymosin alpha 1 in the prevention of infected pancreatic necrosis following acute necrotising pancreatitis (TRACE trial): protocol of a multicentre, randomised, double-blind, placebo-controlled, parallel-group trial

    Get PDF
    Introduction Infected pancreatic necrosis (IPN) and its related septic complications are the major causes of death in patients with acute necrotising pancreatitis (ANP). Therefore, the prevention of IPN is of great clinical value, and immunomodulatory therapy with thymosin alpha 1 may be beneficial. This study was designed to test the hypothesis that the administration of thymosin alpha 1 during the acute phase of ANP will result in a reduced incidence of IPN. Methods and analysis This is a randomised, multicentre, double-blind, placebo-controlled study. 520 eligible patients with ANP will be randomised in a 1:1 ratio to receive either the thymosin alpha 1 or the placebo using the same mode of administration. The primary endpoint is the incidence of IPN during the index admission. Most of the secondary endpoints will be registered within the index admission including in-hospital mortality, the incidence of new-onset organ failure and new-onset persistent organ failure (respiration, cardiovascular and renal), receipt of new organ support therapy, requirement for drainage or necrosectomy, bleeding requiring intervention, human leucocyte antigens-DR(HLA-DR) on day 0, day 7, day 14, and so on and adverse events. Considering the possibility of readmission, an additional follow-up will be arranged 90 days after enrolment, and IPN and death at day 90 will also be served as secondary outcomes. Ethics and dissemination This study was approved by the ethics committee of Jinling Hospital, Nanjing University (Number 2015NZKY-004-02). The thymosin alpha 1 in the prevention of infected pancreatic necrosis following acute necrotising pancreatitis(TRACE) trial was designed to test the effect of a new therapy focusing on the immune system in preventing secondary infection following ANP. The results of this trial will be disseminated in peer-reviewed journals and at scientific conferences. Trial registration number ClinicalTrials.gov Registry (NCT02473406)

    Structural basis of outer membrane protein insertion by the BAM complex

    Get PDF
    All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB–BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP

    The Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass

    No full text
    The Global Digital Elevation Model produced from stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer data (ASTER GDEM) covers land surfaces between latitudes of 83°N and 83°S. The Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard Advanced Land Observing Satellite (ALOS) collected many SAR images since it was launched on 24 January 2006. The combination of ALOS/PALSAR interferometric data and ASTER GDEM should provide the penetration depth of SAR data assuming ASTER GDEM was the elevation of vegetation canopy top. It would be correlated with forest biomass because penetration depth could be affected by forest density and forest canopy height. Their combination held great promises for the forest biomass mapping over large area. The feasibility of forest biomass mapping through the data synthesis of ALOS/PALSAR InSAR data and ASTER GDEM was investigated in this study. A procedure for the extraction of penetration depth was firstly proposed. Then three models were built for biomass estimation: (I) model only using backscattering coefficients of ALOS/PALSAR data; (II) model only using penetration depth; (III) model using both of them. The biomass estimated from Lidar data was taken as reference data to evaluate the three different models. The results showed that the combination of backscattering coefficients and penetration depth gave the best accuracy. The forest disturbance has to be considered in forest biomass estimation because of the long time span of ASTER data for generating ASTER GDEM. The spatial homogeneity could be used to improve estimation accuracy

    Efficient Processor Allocation for 3D Tori

    No full text
    Efficient allocation of distinct subsets of processors to different jobs (i.e., space sharing) is critical to the performance of parallel computers, especially large scale parallel computers. This paper presents an efficient and lookahead strategy for processor allocation in 3D torus-connected systems, such as the Cray T3D, where each job requests for an exclusive allocation of a 3D submesh. The proposed processor allocation scheme has the following features: complete recognition of all maximal free submeshes, compact representation of submeshes, fairness with FCFS scheduling discipline, higher system utilization with lookahead scheduling, no restriction on the submesh orientation, and low allocation and scheduling overhead. The performance of the proposed strategy is demonstrated through simulation. Keywords: Processor allocation, Job scheduling, Lookahead scheduling, Torus, Mesh, Performance evaluation, Parallel computer. This work was supported in part by NSF grants CDA-9121641 a..
    corecore